REGIA ACCADEMIA NAVALE - LIVORNO

:: Pubblicazioni dell'ISTITUT0 ELETTR0TECNIC0 e RADIOTELEGRAFIC0 della R. Marina
G. VALLAURI

Il centro radiotelegrafico di Coltano

Estratto da L'Elettrotecinica - Vol. Xi - N. 1 e 2
5-15 Gennaio 1924

Il centro radiotelegrafico di Coltano

1. Cenno storico - 2. Disposizione dei fabbricati - 3. Fabbricato principale - 4. Alimentazione di energia - 5. Schema elettrico principale - 6. Convertitori ad arco - 7. Induttanza di antenna e sistema di manipolazione - 8. Alternatore ad alta frequenza - 9. Distribuzione dei locali della nuova Radio - 10 - Impianto idraulico - 11 . Sala telegrafica e sale di manipolazione - 12. Antenna - 13. Piloni di 250 m . - 14 . Presa di terra - 15. Funzionamento del sistema irradiante - 16. Stazioni minori - 17. Abitazioni ed altri fabbricati - 18. Centro ricevente - 19. Servizio radio - 20. Conclusione

1. - Cenno storico

La stazione radio di Coltano fu la prima grande stazione italiana, e una delle primissime nel mondo. La localita, a 10 km a sud di Pisa
giante e acquitrinoso di quella zona fu allora giudicato particolarmente adatto per l'impianto di una grande stazione. Il lavoro fu affidato dall'Amministrazione dei Telegrafi alla Compagnia Marconi, e per effetto di difficoltà tecniche e burocratiche si trascinò dal 1903 al

Fig. 1. - Pianta generale del centro radiotelegrafico di Coltano.
e a 15 km a nord-est di Livorno, fu indicata da G. Marconi a S. M. il Re , il quale concesse gratuitamente l'uso di una parte del terreno della tenuta di Coltano, allora appartenente alla Casa Reale e più tardi ceduta all’Opera Nazionale dei Combattenti: Il terreno pianeg.

1911, quando, appena iniziatasi la guerra libica. la R. Marina assunse il servizio della stazione e la mise in effettivo esercizio.

Durante la guerra mondiale, per assicurare un buon servizio con le colonie del Mar Rosso e dell'Oceano Indiano e per stabilire un

primo collegamento con il Nord America, la R. Marina costtui la Radio Roma (S. Paolo) (') e, sulla base dell'esperienza ivi raccolta e di una razionale previsione del futuro sviluppo delle radiocomunicazioni, decise, dopo la guerra, di provvedere all'impianto di una più potente stazione, capace di svolgere servizio commerciale con il Nord America (indipendentemente da altri servizi, permanenti od eventual: di importanza militare e politica) e suscettibile di ulteriori ampliamenti e perfezionamenti in accordo con le esigenze del traffico e con lo sviluppo della tecnica.

Fu stabilito di eseguire il nuovo impianto a Coltano e di coordinarlo con la trasformazione ed il rimodernamento della vecchia sta zione, e ciò per obbedire a parecchie ragioni concordi, fra cui giova citare le più importanti: 1) la munificenza del Sowrano concesse subito l'uso di un altro notevole tratto di terreno ; 2) la posizione di Coltano. al!'incirca equidistante dalla capitale e dalla grande zona in dustriale del Nord Italia permetteva di contare su buoni collegament telegrafici coi centri più importanti; 3) |'esistenza della vecchia stazione e la possibilità di trasformarla e di utilizzarla per le medie distanze offrivano il modo di creare a Coltano un mod erno centro

Fig. 3. - Fabbricato principale.
radio, capace di sfruttare tutti gli evidenti vantaggi tecnici ed economici di una riunione dei servizi inerenti a più linee; 1) la vicinanza dell'Istituto Elettrotecnico e Radiotelegrafico della R. Marina, sorto pochi anni prima presso ta R. Accademia Navale, consentiva di provvedere al progetto e alla direzione dei lavori e del serviz.o in modo conveniente e senza alcuna spesa per tale capitolo.

Il grosso delle opere murarie per il nuovo mpianto lu eseguito nel 1920-21, e nel 1922 si procedette al montamento dei piloni e alla sistemazione dei macchinari, delle linee, degli apparati. I giorni 10, 11 e 12 aprile 1923, la nuova stazione compieva felicemente le prime prove di trasmissione ed il 15 aprile cominciava regolarmente il suo servizio. che non è più stato interrotto.

Intanto, fin dall'inizio del 1923, ed in seguito alle nuove disposizioni legislative riguardanti i servizi radio, il Governo, e per esso il Ministero delle Poste e Telegrafi, iniziava trattative per la crssione di tali servizi all'esercizio privato, comprendendo fra $£$ l'impianti da cedere anche il centro di Coltano, allo stato in cui aliora si toovava. Nelle more delle decisioni al riguardo 1 'Almminstrazione della R. Marina, ne!l'interesse dell'erario, ed anche par lasciar libera al concessionario !a possibilità di seguire un'indirizzo tecnico diverso da quello

[^0] 241, e Pubblicazione dell'Istituto E. e R. T., N. 8.
fin allora seguito, sospendeva i lavori ul completamento e d sistemazione del centro di Coltano, già predisposti per il 1923 e che avrebbero dovuto dare all'impianto, entro l'anno, ii suo assette' definitivo.
maste in una condizione che rivela chiaramente 'a soluz'one provvisoria e di ripiego. Per lo stesso motivo, nella descriz:one che qui si è voluta tratteggiare del Centro di Coltano, il lettore troverà qua e là

Fig. 4. - Pianta della Nuova Radio.
Per questo motivo le installazioni si presentano ogzi, alla vigilia ciel un accenno a quello che l'impianto avrebbe dovuto essere secondo il passaggio alla Società concessionaria, in una veste assai meno per- progetto, in luogo di quello che esso è ora effittivamente

「ig. $3 .-$ Sezione $A B C D$ della Nuova Radio.
fetta di quella che avrebbero dovuto avere, poichè, menire nelle linee essenziali il lavoro è compiuto e lo prova il servizio che esso svolge ininterrottamente dall'aprile, molte parti secondarie sons tuttavia ri-

2. - Disposizione dei fabbricati.

L'insieme del Centro di Coltano risulta dalla pianta in fig. 1 e dalla vista prospettica approssimativa della fig. 2. L'insieme dei fab-
bricati è distribuito sul dorso di una piccola duna (detta il poggio di Corniolo), che emerge dalla cirnostante palude. L.'asse della duna è diretto all'incirca da libeccio a grecale e su di esso è stata costruita una strada rotabile, che si prolunga da un lato fino ai così detti Pa lazzi di Coltano, centro della estesa tenuta (ceduta da S. M. il Re all'Opera Nazionale dei Combattenti, che ne ha intrapreso la grandiosa bonifica) e dall'altro fino alla strada alzaia del fosso Caligi, la quale, attraverso le borgate delle Rene e di Ospedaletto, conduce a Pisa.

3. - Fabbricato principale.

La nuova stazione, o stazione transcontinentale, ha sede nel fabbricato appositamente costruito (fig. 3), che contiene anche la cabina di trasformazione principale, l'ufficio telegrafico e gli uffici radio di tutto il centro. E un fabbricato a pianta rettangolare di m 43×29, con due corpi avanzati; la costruzione è in muratura crdinaria ed in cemento armato. Il fabbricato apparisce esteriormente ad un solo piano (coperto da una grande terrazza), salvo che nella parte centrale an-

Fig. 6. - Sezione EFGH, della Nuova Radio.

La vecchia stazione marconiana sorge all'estremo di sud-ovest della duna ed era completata un tempo da alcune modeste tettoie e da baracche ad uso di magazzini; il personale veniva alloggiato in locali presi in affitto dalla Casa Reale presso i Pa azzi. Deciso l'impianto della nuova stazione, fu necessario progettare per essa un apposito fabbricato e si dimostrò opportuno di costruirlo a par:e sull'altro estremo della duna a circa mezzo chilometro dall'antico, perchè questo mal si prestava ad un ampliamento, e, data la disponibilità del terreno con-
teriore, la quale comprende un secondo piano su un fronte di 20 m con profondità di 8 m . La facciata ed i flanchi dei due corpi avanzati, sono in laterizi a faccia vista con uno zoccolo in pietra e decorazioni in cemento; la parte posteriore è ad intonaco.

La disposizione generale dei locali risulta dalla pianta (fig. 4) : il fabbricato è diviso in due parti da un ampio corridoio centrale, a cui si accede dall'ingresso; la parte anteriore è riservata agli uffici, alla sala per esperimenti e conferenze, all'officina meccanica, al magaz-

Fig. 7. - Schema eletrrico principale.
cesso, risultava all'incirca obbligata la posizione del nurvo padiglione aereo. Conveniva altresi che quest'ultimo non fosse troppo vicino a quello preesistente al fine di permettere il funzionamento indipendente e simultaneo delle antenne, senza bisogno di speciali dispositivi di compensazione o altri artifici. Le due stazioni radio, poste all'incirca agli estremi del tratto sopraelevato del Poggio di Corniolo, delimitano così il nucleo principale dell'impianto. Esso è chiuso da un recinto in rete metallica ed è percorso da una strada centrale (che dovrebbe, insieme col prolungamento delle due strade di accesso, diventare un bel viale di tigli), lungo la quale si allineano i fabbricati di abitazione e di servizio.
zino ed alla cabina di trasformazione principale. La parte posteriore, che è la più ampia, comprende i saloni dei macchinari e degli apparati di trasmissione. L'utilizzazione dei locali nel senso dell'altezza si rileva dalle sezioni $A B C D$ ed $E F G H$ (fig. 5 e 6).

4. - Alimentazione di energia.

Per l'impianto elettrico fu esaminato innanzi tutto il problema della produzione di energia. Il servizio radio esige che questa sia a disposizione con perfetta continuità : perciò, sotto tale punto di vista, disposizione con perfetta continuità : percio, sotto tale punto di vista,

Se si procede per questa via, è forse preferibile, nei riguardi delle spese di esercizio, servirsi effettivamente e continuamente della centrale propria, piuttosto che tenerla come impianto di riserva rispetto alla fornitura di energia da parte di una società elettrica: D'altro canto l'energia acquistata presso un fornitore è assai meno sicura e meno ben regolata, ma anche, in generale, più a buon prezzo. Per ragioni essenzialmente economiche e tenuto anche conto dell'incertezza sulla sorte definitiva dell'impianto, si prescelse l'alimentazione diretta da parte della società esercente, che distribuisce energia elettrica in tutta la zona. Ad ogni modo anche la riserva termica fu a suo tempo stu-

Fig. 7-bis. - Gruppi convertitori e quadro a 5000 V della sala macchine.
diata e doveva costituirsi, almeno inizialmente, con un motore Diesel marino da 1200 HP , nuovo e disponibile presso il R. Arsenale di Spezia in seguito alle vicende di guerra. Di esso erasi già costruita l'intelaiatura di sostegno, necessaria per la sua sistemazione su basamento di calcestruzzo e per l'accoppiamento con un alternatore trifase a $5000 \mathrm{~V}, 50$ periodi, 428 giri. Sospesa tempestivamente questa installazione, l'impianto è per ora rimasto alimentato soltanto dalla rete della società esercente.
a 30 kV è tutta aerea. I disturbi che essa potrebbe recare alla rice zione radio non hanno alcun peso, perchè nel caso di grandi centri il servizio è sempre fatto in duplex e la stazione ricevente e altrove. La ragione per cui in molti impianti l'ultimo tratto della linea di alimentazione di energia è in cavo. deve ricercarsi nella possibilità di disturbi prodotti dall'impianto ad alta frequenza sulla linea di energia. Nel caso di Coltano, data la forma degli aerei e la loro posizione rispetto alla linea (fig. 1), è stato possibile valutare a priori l'ordine di grandezza delle f. e. m. e. delle correnti ad alta frequenza in essa indotte, deducendo che esse non avrebbero potuto provocare alcun disturbo, come infatti è avvenuto.

Fig. 8. - Circuito magnetico dei grandi arehi.
5. - Schema elettrico: principale (fig. 7).

La linea a 30 kV , 50 periodi, incontra in cabina gli apparecchi di protezione a condensatore, un interruttore principale e gli apparecchi di misura, ed alimenta un trasformatore trifase $30000 / 5000 \mathrm{~V}, 900 \mathrm{kVA}$ con prese supplementari per 28000 e 29000 V . E in corso di fornitura un altro trasformatore di eguale potenza allo scopo di costituire la necessaria ciserva. La tensione secondaria di 5000 V è stata scelta, sia perchè essa è una delle tensioni normalizzate, sia perchè il macchinario della vecchia radio era già alimentato a 5000 V dalla linea dell'impianto primitivo, sia infine perchè la tensione di 5000 V si

Fig. 9. - Sezione della cassa e degli elettrodi dei grandi archi.

Coltano si trova, a questo riguardo, entro una grande maglia delle linee a $30-35 \mathrm{kV}$ della Società Ligure Toscana di Elettricità e la cabina più prossima è quella di Stagno, verso cui concorre sia la linea principale Serchio-Lucca-Pisa-Livorno, sia quella secondaria Lima-Pe-scia-Pontedera-Livorno, collegate fra loro da opportune trasversali. Dal nodo di Stagno parte la linea a 30 kV che alimenta Coltano e serve anche all'impianto idrovoro della Bonifica. L'ultimo tratto, dalla biforcazione (cabina di Cancello dei Pini) alla Radio, è di proprietà dell'Amministrazione. I sostegni della linea sono già predisposti per il raddoppiamento della terna a partire da Stagno ed è anche fatta riserva di costruire all'occorrenza una nuova linea distinta e indipendente dalla prima, e proveniente da altro centro di alimentazione. La linea
prestava bene per un collegamento in cavo fra le due radio. Dalla cabina partono quindi due cavi trifasi a 5000 V l'uno per la nuova, l'altro (armato) per la vecchia radio.

La cadio transcontinentale fu studiata innanzi tutto per funzionare con convertitori ad arco; ma in pari tempo si ritenne conveniente installare anche un impianto di generazione elettromeccanica. I due apparati avrebbero dovuto funzionare l'uno come riserva dell'altro e l'esperienza avrebbe deciso circa l'opportunità di svolgere prevalentemente il servizio con questo o con quello. Per l'alimentazione degli archi, tenuto conto dei dati raccolti nei molti impianti già eseguití dalla R. Marina e delle ipotesi sulle proprietà dell'antenna da costruire, si considerò una tensione massima di 1000 V ed una po-
tenza massima di 350 kW . Un gruppo convertitore, costituito da motore a induzione $5000 \mathrm{~V}, 50$ periodi, 980 giri, e da una dinamo a eccitazione separata $1000 \mathrm{~V}, 350 \mathrm{~A}$, a un solo collettore (prova di rigidità a 5000 V alternativi efficaci per 10 m a caldo), fu installato per l'alimentazione degli archi, e un altro gruppo identico è in corso di fornitura. Per il comando dell'alternatore, date le troopo ampie variazioni della tensione alternata di linea e le difficoltà di una buona regolazione di velocità nel caso di comando diretto, e tenuto conto del fatto che il macchinario per la conversione in corrente continua era già necessario per gli archi, si giudico conveniente adottare un motore a corrente continua a 1000 V .

Per i numerosi servizi ausiliari a corrente alternata fu prescelta la tensione trifase di 220 V concatenata, 125 V stellata, ottenuta con
gnalazioni, ecc., e per l'illuminazione, in caso di mancanza di corrente alternata. L'eccitazione delle dinamo da 1000 V può esser fornita o dalle rispettive eccitatrici o dalle sbarre a 120 V alimentate dagli accumulatori.

6. - Convertitori ad arco.

I due convertitori ad arco Poulsen sono sistemati nella sala contigua a quella delle macchine. Essi furono studiati per una intensità massima di conrente continua di 300 A , pari a 213 A di corrente di antenna. Il progetto fu eseguito in base a studi teorici e con l'aiuto dai dati raccolti sugli archi di minor potenza installati, condotti e in parte costruiti dalla R. Marina. Il circuito magnetico degli archi ri-

un trasformatore da 100 kVA . Sotto questa tensione sono alimentati il motore del gruppo convertitore per produzione di corrente continua (motore a induzione 980 giri, dinamo $120-180 \mathrm{~V}$ 500-333 A; un secondo gruppo identico è in corso di fornitura), le pompe dell'impianto idrico. i motori degli aspiratori degli archi, i motori di officina, l'impianto di illuminazione e il cavo di energia (trifase con neutro) che reca corrente a tutti i fabbricati del centro e sbocca con l'altro estremo nella vecchia radio, di dove puo anche essere alimentato mediante il trasformatore da $5000 / 220 \mathrm{~V}$ ivi installato per i servizi. ausiliari.

La sala macchine della nuova radio contiene, oltre i gruppi sonvertitori con il trasformatore $5000 / 220 \mathrm{~V}$ e le due pompe, anche il quadro di manovra a 5000 V e quello di distribuzione. A quest 'ultimo sono collegate le due batterie di accumulatori a 120 V della capacità di 2300 Ah ciascuna alla scarica in 3 ore. che servono per i meccanismi ausiliari degli archi, dell’alternatore, degli impianti telegrafici, delle se-
sulta dalla fig. 8 ; dalla fig. 9 si possono rilevare i particolari della cassa e degli elettrodi. Il circuito magnetico è in acciaio fuso, la cassa con i suoi prolungamenti è in bronzo a doppia parete per permettere la circolazione d'acqua, l'isolamento degli elettrodi della cassa è ottenuto mediante dischi di eternit. I rocchetti di eccitazione, montati sui due poli sono costituiti ciascuno da 6 ciambelle di piattina di rame di sezione $8 \times 8 \mathrm{~mm}$, comprendenti 152 spire per ogni ciambella

I diagrammi della fig. 10 raccolgono i risultati di alcune delle prove eseguite sugli archi. Dalla fig. 10-a) risulta confermato che le grandi bobine massicce, sebbene ventilate da una piccola intercaped:ne fra ciambella e ciambella, sono in condizioni di raffreddamento assai sfavorevoli, così che, anche con una densità di corrente di poco superiore a $1 \mathrm{~A} / \mathrm{mm}^{2}$, il sovrariscaldamento a regime è eccessivo. Di ciò era stato tenuto conto in progetto; infatti dalla fig. 10-d) si rileva che l'intensità di campo necessaria, pari a circa 7000 gauss, si può
ottenere, anche con la massima apertura di interferro, con una intensità di 50 A per bobina cioè con $0,78 \mathrm{~A} / \mathrm{mm}^{2}$ nel rame. La fig. $10-b$) dà un'idea del modo di variare del campo quando ci si allontani assialmente, ovvero radialmente dalla zona centrale dell'interferro; la fig. $10-c$) dimostra l'effetto delle dispersioni magnetiche, a cagione delle quali le ciambelle più prossime all'interferro esercitano un'azione preponderante.

Fig. 1.1. - Schema di inserzione degli archi.
Lo schema di inserzione degli archi risulta dalla fig. 11. Come si vede, si è ritenuto conveniente non rinunciare all'isolamento del negativo e quindi anche della carcassa della macchina generatrice da terra (${ }^{2}$). I dispositivi di protezione della macchina sono costituiti, oltre che dai due interruttori a massima, uno in partenza l'altoo in arrivo, anche da 4 grandi spirali di reattanza, due per polo, di circa 6 mH ciascuna, da una catena di 8 scaricatori elettrolitici, appositamente studiati e costruiti, derivata fra i poli della macchina, da una catena di venti lampadine a incandescenza tubolari derivate anch'esse fra i poli e col punto di mezzo a terra e infine da un gruppo di due condensatori ad alta tensione di $0,08 \mu F$ ciascuno, collegati in serie (con interposizione di amperometri a filo caldo da $0,5 \mathrm{~A}$) e connessi

Fig. 11-bis. - Arco N. 1.
ai morsetti della macchina col punto di mezzo attaccato alla carcassa. L'eccitazione degli archi è fatta normalmente in serie, ma il tipo di avvolgimento permette anche una parziale o totale eccitazione separata. Le esperienze hanno dimostrato conveniente di non far partecipare alla funzione di induttanza di arresto anche il circuito di eccitazione in serie; perciò su di esso è stata derivata una capacità di
(") L'Elettrotecnica, 15 aprile 1921, Vol. VIII, N. 21, pag. 282, e Bol-
$0,04 \mu F$ per ogni bobina. Le due bobine sono inserite fra loro in parallelo e in ciascuna di esse le ciambelle sono accoppiate in serie parallele (fig. 11 bis).

Gli archi sono dotati di una circolazione di acqua refrigerante, che viene divisa in due rami, l'uno sul percorso anodo - cassa anodica - coperçhio, l'altro sul percorso catodo - cassa catodica cassa centrale. Poichè il disco di eternit dell'anodo si riscalda sensibilmente e dà luogo ad effluvi con corrente oscillatoria più intensa di 175 A , occorre in questo caso usare una piastra porta-anodo appositamente costruita con doppia parete ed inserire anche questa nel circuito refrigerante. Gli archi sono dotati di apparecchi di alimentazione del carburante, del tipo a serbatoio e a goccia visibile, nonchè di una tubazione di scarico dei gas combusti con saracinesca, aspiratore e vasca di lavaggio. Per correnti di antenna non più intense di 175 A circa, il funzionamento può avvenire a cassa chiusa, senza aspirazione nè scartico dei gas combusti, e questa condizione ha anche il vantaggio di rendere molto meno probabili gli scoppi dovuti al for-

Fig. 12. - Tavolo delle chiavi degli archi
marsi di miscela tonante. Tali scoppi possono dar luogo a incidenti spiacevoli se non sono assicurate opportune possibilità di sfogo del gas, in caso di accensione subitanea della miscela.

7. - Induttanza di antenna e sistema di manipolazione.

Un commutatore bipolare permette di passare dal funzionamento ad arco a quello con alternatore. L'induttanza di antenna, fornita insieme con quest'ultimo, serve in ambedue i casi. Essa e in nastro di rame di $80 \times 1 \mathrm{~mm}$, divisa in 7 ciambelle sovrapposte e portate da un'intelaiatura di legno e bakelite, montata con asse verticale su 7 grandi isolatori a cono. L'intera induttanza ha un valore di circa $3500 \mu \mathrm{H}$ e può portare un'intensità di corrente di circa 200 A .

Il sistema di manipolazione è quello a onda di ciposo; la variazione di lunghezza d'onda è ottenuta mediante la chiusura in corto circuito di un secondario multiplo, completamente isolato dall'indu:tanza e montato sulla stessa intelaiatura. Esso è formato da 4 spi re di nastro di rame situate al di sotto dell'induttanza e comandate da quattro chiavi elettromagnetiche a doppio effetto. Uno dei contatti di ciascuna chiave è collegato rigidamente con un estremo della spira corrispondente, l'altro è invece collegato mediante cordone flessibile a un contatto scorrevole che permette di variare l'area della spira chiusa in corto circuito e quindi anche la corrente in essa indotta e la distanza fra le due onde emesse. Naturalmente il funzionamento dei contatti delle chiavi è tanto più soddisfacente, quanto minore è tale differenza fra le due onde. Si è constatato che in valore relativo essá può ridursi al $0,7 \div 0,6 \%$ della lunghezza d'onda di lavoro. In tali condizioni e con 4 chiavi funzionanti simultaneamente sui 4 secondari, non occorre alcun soffio d'aria fino a che la corrente d'antenna raggiunge 150 A . Si può salire a 175 A con l'aiuto di un buon getto di aria attraverso i contatti ed infine, per correnti più intense. è necessario adoperare un numero maggiore di chiavi e di contatti. Gli elettromagneti a doppia bobina di ciascuna chiave sono collegati in parallelo e comandati da due relais elettromagnetici (fig. 12), zzionati a loro volta dalla macchina telegrafica Wheatstone. Le chinvi permettono una velocità massima di manipolazione di circa 150 caratteri. Era allo studio un sistema di apparecchi per la manipolazione rapida. Un'altra induttanza più piccola e distinta da quella di antenna serve per distribuire la corrente fra le varie prese di somen 18 141

[^0]: (') L'Elettrotecnica, 5-15 maggio 1920, Vol. VII, N. 13-14, pag. 218

