8. - Alternatore ad alta frequenza.

L'impianto dell'alternatore ad alta. frequenza fu previsto dapprima seconda uno studio fatto appositamente ex novo e una ditta costruttrice nazionale aveva assunto l'impegno di fornirlo, dopo avere con successo costruito e fornito un alternatore di prova da 6 kW . Per ragioni di opportunità l'Amministrazione della Marina ritenne a suo tempo conveniente rinunciare alla diretta esecuzione anche di questa parte dell'impianto e di affidarla alla "Marconi's Wireless", la quale a sua volta acquistò il gruppo presso la Société Française Radio Electrique. Il gruppo, ora in corso di montamento, appartiene al tipo ben noto degli alternatori Latour-Bethenod (costruiti dalla Société Alsacienne di Belfort), che si sono diffusi nelle molte stazioni, di cui l'abile iniziativa della Compagnie Générale Radiotélégraphique ha saputo accaparrarsi la fornitura e l'esercizio non solo nella metropoli e nelle colonte trancesi, ma anche all'estero. Trattasi, come è noto, di un alternatore a ferro rotante, con dentatura
fra loro nel modo indicato dallo schema (fig. 13). Raggruppate a 2 a 2 esse alimentano i 4 primari di un trasformatore di oscillazioni, di cui l'unico secondario è in serie con l'antenna. La manipolazione è fatta per chiusura in corto circuito. Nella linea di terra sono inseriti un dispositivo per la misura dell'intensità e della frequenza ed un interruttore con motorino di comando, per il passaggio dell'antenna su un circuito di ricezione. Anche l'alternatore ha bisogno di essere refrigerato. sebbene, per diminuire le perdite, il rotore sia fatto girare in un'atmosfera rarefatta, tenendo chiusa la carcassa e facendo agire una pompa a vuoto. (Il vuoto non deve essere troppo spinto per evitare l'innescamento di scariche attraverso l'aria, troppo facilmente ionizzabile). La refrigerazione si ottiene mediante circolazione d'olio cosi nello statore come nel rotore. Altro olio sotto pressione viene inviato a provvedere di lubrificazione forzata i cuscinetti. Le pompe di circolazione dell'olio, coi relativi motori, filtri e refrigeratori per l'olio stesso, la pompa del vuoto col suo motore, le condotte di circolazione dell’acqua e dell'aria, fredde e calde. e le canalizzazioni

Fig. 13. - Schema dell'impianto dell'alternatore ad alta frequenzal.
laminata cosi nello statore come nel rotore. Il tipo di Coltano è quello da 200 kW che negli ultimi esemplari è stato portato, con qualche perfezionamento fino a 250 kW . Esso è costruito per frequenza di 18750 periodi al secondo, ossia per lunghezza d'onda di 16000 m , con velocità di rotazione di 2700 giri al minuto; ma può essere regolato anche per velocità e quindi per frequenze alquanto diverse. Il problema dell'eliminazione del calore che si svolge nel gruppo è particolarmente difficile.

Il motore, a corrente continua, 1000 V , è comandato dalla dinamo principale attraverso due regolatori automatici, uno per l'avviamento, l'altro per il funzionamento normale, ed il suo schema di inserzione comprende anche i reostati di regolazione automatica di velocità, i dispositivi di blocco e di sicurezza contro il pericolo di velocità eccessiva e quelli per frenamento elettrico. Esso abbisogna di una energica ventilazione; l'aria fresca viene aspirata dall'esterno attraverso una batteria di filtri sistemati in apposito casotto, l'aria calda è spinta in una condotta che sbocca all esterno.

L'alternatore ha l'avvolgimento frazionato in 8 sezioni, collegate
elettriche formano un'insieme così complesso, che si ritenne ennveniente dividere i locali destinati a questa parte dell'impianto in due piani distinti e collocare in quello superiore il gruppo e i quadri di comando e di manipolazione e il trasformatore di oscillazioni, lasciando al piano inferiore tutto il resto del macchinario e delle condutture.

9. - Distribuzione dei locali della nuova Radio.

L'insieme dei macchinari e degli apparecchi descritti è stato collocato nei vari locali del fabbricato nel modo di cui si è già dato cenno nel § 3 e che risulta dalle fig. 4, 5 e 6 . L'ingresso, il corridoio, la sala macchine, la sala archi, la cabina, il magazzino, l'officina, le latrine hanno il pavimento a quota 3,75 sul mare. L'altezza dei vani maggiori è di 8 m e permette i lavori di montamento e di smontamento dei macchinari, agevolati anche dalla presenza di grandi porte di accesso e di due carri-ponte della portata di 8 tonn, sistemati uno nella sala macchine, l'altro nella sala dell'alternatore. Il locale destinato a quest'ultimo impianto è diviso. come si è detto, in due
piani da un solaio con pavimento a quota 5,90 . L'ampio vano è stato progettato in maniera da riservare il posto per un'altra installazione

Fig. 14. - Serbatoio idraulico da 60 tonn e isclatare di ritenuta della coda.
identica o anche di maggior potenza; e ciò allo scopo di permettere in avvenire sia di passare tutto il servizio normale sugli alternatori,
un apparecchio convertitore a triodi, quando questo sistema si dimostrasse maturo per un tale impianto.

Alla stessa quota di 5.9 , a cui si trova il piano sopraelevato nel locale alternatori, sono i tre ambienti nell'angolo sud est del tabbricato, I'uno destinato a servire come sala per conferenze ed esperimenti, gli altri due per uffici. I locali sottostanti al piano di quota 5,90 sono a quota 3,25 e comprendono i locali dei meccanismi ausiliari dell'alternatore e le sale per gli accumulatori. Si può accennare che il solaio al di sotto del trasformatore di oscillazioni ed in tutta la zona invasa da campi oscillatori intensi è stato costruito mediante un sistema di pilastrini e di volte in muratura, per evitare l'impiego di membrature metalliche. Sopra il magazzino, l'officina, l'ingresso e le latrine, per le quali l'altezza di 8 m era superflua, è stato rica-

Fig. 15. - Pianta del primo piano.
vato un ammezzato che contiene uffici di segreteria e locali di deposito.

Tutte le connessioni elettriche, all'infuori di quella parte del circuito luce che si svolge nei locali più lontani dai campi oscillatori, sono in cavo sotto piombo. Le canalizzazioni, per la parte più importante del fabbricato, corrono in cunicoli praticabili, che accolgono anche tutte le altre condutture di acqua, aria, gas, ecc. e servono altresi, per mezzo di sbocchi esterni, a scopi di ventilazione.

10. - Impianto idraulico.

L'impianto idraulico doveva innanzi tutto soddisfare alle esigenze imposte dal fabbisogno di acqua di circolazione così per i convertitori ad arco. come per il macchinario ad alta frequenza. Il fabbisogno massimo previsto è di circa 200 litri al minuto. A ciò si è provveduto con l'acqua del vicino palude e precisamente con quella di una antica grande vasca esistente a sud-est del fabbricato principale, verso cui convergono alcuni canali e che non si è mai prosciugata neppure

Fig. 16. - Tavolo di manipolazione della radio continentale ICI.
sla di accrescere la potenza dell'impianto proporzionatamente ad un eventuale aumento dell'estensione dell'antenna, sia infine di sistemare
nei più lunghi periodi di siccità. Di là, attraverso a un breve canale e ad un filtro a ghiaia, l'acqua perviene in una vasca di decantazione d

$\mathrm{m} 23 \times 12.80$ (coperta da una leggera tettoia in cemento armato), che immette in un canale coperto e nel pozzo di aspirazione delle pompe. Queste sono due, eguali, con motore trifase 220 V 50 periodi e sono capaci di erogare 1000 litri al minuto con una prevalenza di 25 m . Esse sono sistemate nella sala macchine in un vano a quota più bassa (da cui si accede ai cunicoli), allo scopo di meglio garantire l'innescamento. Normalmente la mandata delle pompe immette nella

Fig. 19. - Basamento, treppiede, cerniera e tronco inferiore di traliccio
tubazione che carica il serbatoio in cemento armato (fig. 14) della capacità di $60 \mathrm{~m}^{3}$ e con quota di fondo m 16.50. Dal serbatoio parte una tubazione di erogazione (in cui si pud immettere direttamente, all'occorrenza, la mandata delle pompe), che alimenta, non solo le derivazioni principali per la circolazione negli, archi e nei macchinari dell'alternatore, ma anche le prese per incendio in prossimità del fab-
bricato principale. Essa può essere collegata attraverso una saracinesca, con la tubazione generale dell'acqua di lavanda, che corre lungo la strada centrale da un estremo all'altro del!'impianto e si dirama a ciascuno dei fabbricati, alle prese di incendio e ai circuiti refrigeranti degli apparati della vecchia radio. Di regola la saracinesca è chiusa e questa tubazione è alimentata a parte da un altro serbatoio della capacità di $35 \mathrm{~m}^{3}$ costruito sul tetto della casermetta con quota di fondo 16. Esso viene rifornito da due pompe a comando automatico, collegate con un pozzo appositamente scavato (§ 17).

All'acqua potabile si è provveduto, in seguito ad opportuni accordi, prolungando la diramazione eseguita dall'Opera dei Combattenti per i Palazzi di Coltano ed alimentata dall'Acquedotto del Comune di Livorno, proveniente da Filettole.

11. - Sala telegrafica e sale di manipolazione.

Il piano superiore del fabbricato principale è destinato all'ufficio telegrafico e agli apparati di manipolazione radio (fig. 15). E costituito

Fig. 20. - Tratto inferiare del pilone N. 4 e pilone N .2.
da un ingresso a vetrate, per mezzo del quale si accede anche alla terrazza. e da quattro locali distinti e comunicanti, forniti di un sistema di piccoli cunicoli rel pavimento per le connessioni elettricie. In questi locali si è voluto riunire tutto il personale telegrafista e radiotelegrafista e tutta la condotta del traffico, non solo della rad:o transcontinentale, ma anche della radio continentale e di quella coloniale, i cui apparati si trovano nel fabbricato del vecchio impianto. Il capo della stazione (o per esso il capoturno di servizio) deve poter dirigere e seguire tutto l'andamento dell'impianto, senza allontanarsi dal suo posto. Presso il macchinario deve restare il solo personale elettricista, avvertito per mezzo di segna!azioni elettriche delle manovre da eseguire per l'avviamento. l'arresto e la regolazione degli organi e degli apparati ad esso affidati. Lufficio centrale, anzichè nel fabbricato stesso della radio, si sarebbe anche potuto cosrituire, con le stesse funzioni, in luogo relativamente lontano, per es. a Pisa, nell'immediata vicinanza di quell'ufficio telegrafico. Tale soluzione. sotto parecchi aspetti più razionale e conveniente, non fu adottata per le notevoli spese che i collegamenti e l'ufficio avrebbero ri-
chiesto, e che non sarebbero state giustificate a cagione dell'incertezza sull'assetto definitivo dell'impianto.

La sala telegrafica comprende un quadro principale a caviglie, tre apparati Hughes e due Morse, e comunica con due piccoli locali attigui per le batterie di pile e di accumulatori. In essa sboccano, oltre alle linee di energia a corrente continua e alternata per i vari servizi, anche un cavo telegrafico per il collegamento colla rete nazionale dei telegrafi, due cavi telegrafici e di segnalazione per il collegamento con la radio coloniale e continentale e il cavo di manipolazione della radio transcontinentale. Il cavo telegrafico è un cavo aereo sotto piombo a 10 coppie; esso è disteso dalla Radio verso levante fino alla strada del Caligi (fig. 1), al di là della quale si prolunga in una linea telegrafica ordinaria che si ricollega al fascio principale presso Vicarello. Erano stati progettati numerosi collega menti (in proporzione col numero di coppie del cavo) per agevolare il rapido inoltro dei telegrammi da e per Coltano, ma in via provvisoria essi furono limitati a due linee dirette con Roma e Milano, servite da apparati Hughes, e a due linee con Livorno e col Centro ricevente per l'inoltro delle note, servite da apparati Morse. I due cavi di segnalazione fra le due radio sono da otto coppie ciascuno. Essi servono per le comunicazioni di servizio co! personale elettricista destinato agli apparati della vecchia radiu, per le linee di manipolazione, per i campanelli di segnale, per le linee dell'apparecchio di controllo della corrente di antenna, ecc. L'esecuzione dell'impianto telefonico per le comunicazioni fra i vari locali e fabbricati di tutto il centro fu a suo tempo sospesa.
valore proposto. Messa a calcolo una tensione di 70000 V con lunghezza d'onda di 16000 m risulta necessaria una capacita di circa $25 m \mu \mathrm{~F}$.

Assunto questo valore per la capacità statica, fu studiata la forma dell'antenna. Se per valori più elevati di capacità, si sarebbe potuto discutere circa la convenienza di dare all'antenna una forma più o meno allungata, in questo caso, tenuto anche conto della disponibilità di terreno, s'imponeva quasi da sè la soluzione, che fu effettivamente prescelta. Essa consiste nell'adozione di un'antenna in forma di grande reticolato quadrilatero, sostenuto da *quattro piloni eguali e collegato con la stazione per mezzo di una discesa a ventaglio, fissata ad uno dei lati. La forma prescelta a anche queiia che meglio si presta, mediante l'aggiunta di successive coppie di piloni di seguito ai primi, ad effettuare quell'ulteriore eventuale anpliamento, di cui si volle mantener sempre libera ed agevole la possibilità. Uno studio preventivo, eseguito sulla scorta dei metodi proposti dal Howe (${ }^{4}$), permise di prevedere che la voluta capacita si sarebbe raggiunta dando al quadrato delle basi dei piloni un lato di m 420 , e ponendo la stazione a $\mathrm{m} 250^{\circ}$ dal lato più prossimo. Nacque così la distribuzione in pianta rappresentata dalla fig. 1. Le misure eseguite nel 1923 hanno dato per la capacità statica di antenna il valore di $25.0 \mathrm{~m} \mu \mathrm{~F}$.

Per il tipo di reticolato di antenna si ritenne, in base all'esperienza raccolta nella Radio Roma, di poter continuare a servirsi delia corda di bronzo fosforoso ad alta conducibilità, di diametro circa $3,5 \mathrm{~mm}$, (7 fili di mm 1.2) rinforzando il reticolato con quattro

Fig. 21. - Tratm infericre del pilone N. 2.

I tre rimanenti locali del primo piano, oltre la sala telegrafica, sono destinati alla manipolazione delle trasmissioni (simultanee) da parte delle tre antenne del Centro. La manipolazione è eseguita automaticamente mediante macchine Wheatstone, La preparazione delle striscie è fatta coll'aiuto di perforatrici Creed. L'operatore che sorveglia il funzionamento della Wheatstone, ha sott'occhio il testo del telegramma in corso di trasmissione e, collaiuto di un ricevitore e di una cuffia telefonica. verifica continuamente che la perforazione sia corretta e l'emissione e la manipolazione regolari. Per di più l'operatore può verificare continuamente che la corrente di antenna sia quella prescritta, mediante un apposito indicatore. In caso di avaria al relais o di irregolarità o errori nella striscia, si può passare immediatamente alla manipolazione a mano, mediante semplice inversione di un commutatore. Come esempio si riporta lo schema del tavolo di manipolazione per la stazione continentale ICI (fig. I6).

12. - Antenna.

La parte forse più interessante del centro di Coltano è quella che riguarda il padiglione aereo o antenna. Per il servizio col Nord America, posto a base dei calcoli, si ritenne necessario un coefficiente di efficacia di almeno 35000 metri-ampere (${ }^{2}$). Contrariamente alle tendenze che allora si manifestavano in America, ma concordemente con quelle seguite anche da altri in Europa, si ritenne conveniente adottare piloni di sostegno dell'altezza di 250 m . Presumendo un'altezza di radiazione di almeno 165 m , bastava allora una intensità efficace di 212 A di corrente di antenna per raggiungere ii
(J) L'Elettrotecnica. 25 settembre 1923, Vol. X, N. 27, pag. 650, e Pubblicazione N. 26 dell'Istituto E. e R. T.
corde terminali e con due interne in croce, tutte in cavo d'acciaio (draglie) (fig. 17). Tutti i fili di antenna sono assicurati alle draglic e Ara loro mediante robuste legature in filo di bronzo. I fili della coda (a ventaglio) sono 19 ; di essi i due più esterni sono rinforzati, perchè costituiti da 4 fili ordinari legati insieme. L’apertura del ventaglio è limitata alla parte centrale della draglia sud per mantenere i fili della coda ben Jontani dai controventi dei due piloni più prossimi. Sono tuttavia completate le connessioni in filo di bronzo dai fili della coda a tutti i conduttori che partono dalla draglia sud. La lunghezza del ventaglio è sufficiente per permettere di farme discendere il vertice fino a terra senza abbassare gli attacchi superiori. Dal vertice del ventaglio alla parete nord della stazione, la coda di antenna si prolunga (a questo riguardo il disegno da cui è stata ricavata la fig. 2 è inesatto) con un conduttore tubolare lungo m 115 e costituito da 19 fili di aereo tenuti a distanza da anelli di rame del diametro di 20 cm . I punti di attacco esterni dell'antenna sono perciò cinque, di cui quattro al vertice dei piloni ed uno alla ritenuta della coda contro il fabbricato. Il peso totaie dell'antenna si avvicina a 4 ionnellate. Tenuto conto della tensione iniziale di montamento (con atmosfera calma) calcolata in tonn 4 per ogni vertice, della superficie di reticolato esposta al vento e di una pressione massima di questo, pari a $300 \mathrm{~kg} / \mathrm{m}^{2}$ su superficie piane, si è calcolato lo sforzo massimo di tensione che l'antenna può esercitare sul vertice di un pilone. Questo sforzo risulta di 10 tonn circa.

L'isolamento dell'antenna dai sostegni è stato affidato ad isolatori del tipo cilindrico o a bastone, in cui cioè la porcellana è sollecitata a trazione. Il tipo di isolatore adoperato risulta dalla fig. 18; cgni
(4) The El., 28 agosto e 4 e 11 sett. 1914 vol. 73 pag. 829 e seg.
esemplare fu sottoposto a una prova di trazione di 5 tonn. Per la sospensione dei vertici dell'antenna si prescelse un tipo di attacco binato con due isolatori collegati da traverse a snodo (fig. 17). Il sistema deve quindi reggere fino alle 10 tonn previste nel caso di vento massimo eccezionale; esso costituisce altresì una valvola di sicurezza

Fig. 22. - Un pilone visto dad basso.
meccanica, in quanto che, in caso di sollecitazioni anormali, dovreobe essere il primo a rompersi, evitando i danni molto maggiori che le sollecitazioni stesse potrebbero produrre sui piloni. Sulla ritenuta della coda è stato sistemato un altro isolatore del medesimo tipo fig. 14). A partire dall'attacco di esso l'antenna si prolunga in un fascio di fili e poi in un tubo e perviene all'isolatore di passaggio :n porcellana, sostenuto da due ampie lastre di vetro, la cui intelaiatura è fissata nella parte più alta della grande apertura di accesso dall'esterno alla sala archi. Tutti gli isolatori di sospensione sono forniti di anelli di guardia per migliorare la distribuzione del poteriziale elettrico.

13. - Piloni di 250 metri:

I dati principali per il calcolo dei piloni sono costituiti, oltre che dalla tensione esercitata dall'antenna. sia in riposo, sia col massimo vento, anche dall'ipotesi della pressione del vento su tutto : $:$ pilone e sui suoi controventi e dallo spostamento che si ammettc debba subire il vertice nella condizione di sollecitazione massima. Sono invece variabili entro certi limiti altri dati assai importanti, quali il numero dei controventi o stralli, il tipo di struttura metailica, la distanza degli ancoraggi dalla base, la creazione di cerniere intermedie, ecc. Si ammise che la pressione massima, che il vente avrebbe potuto esercitare sul pilone, variasse linearmente dalla base al vertice da 100 , a $300 \mathrm{~kg} / \mathrm{m}^{2}$. Si ammise altresi che in queste condizioni il vertice del pilone dovesse spostarsi di 2 m dalla sua posizione di riposo. L'ipotesi di uno spostamento cosi ampio è naturalmente accompagnata dalla condizione che il pilone si soosti restando rettilineo (a meno che non vi siano cerniere intermedie, ciò che in questo caso si era escluso) e che il suo appoggio alla base
sia a cerniera. La scelta di questo appoggio, che è stato realizzato con un perno sferico e relativa calotta, ambedue in acciaio fuso, permise altresi di studiare il sistema in modo tale da consentire lisoiamento dei piloni da terra. La questione della convenienza o meno di tale isolamento è stata più volte discussa. e può considerarsi ancor oggi non del tutto risolta.

E da ritenersi che, ove non si incontrassero eccessive difficoltà tecniche ad effettuare un isolamento veramente buono della base dci piloni, esso sarebbe più conveniente che non la messa a terra diretta, ma che questa sia invece assai preferibile ad un isolamento imperfetto e mutevole con le condizioni atmosferiche. Il treppiede ifigure 19, 20 e 21), che porta il perno sferico, può essere poggiato su tre gruppi composti ciascuno da quattro colonne di isolatori di porcellana del tipo a cilindro schiacciato e leggermente rigonfio (a forma di formaggio). Ogni colonna deve comprendere quattro di tali isolatori, separati da dischi di materiale plastico. quale il piombo o mieglio (secondo i risultati delle prove effettuate e indipendentemente dalla questione della durata) il legno santo. Nell'attesa di avere una serie di isolatori provati meccanicamente in modo del tutto sicuro ed in ogni caso per non cimentarli durante il lavoro di montamento, si misero inizialmente in opera, in luogo dei gruppi di quattro colonne di isolatori, altrettanti blocchi di granito di eguale a!tezza. Sons previsti appositi martinetti per sollevare di poco il treppiede ed eseguire la sostituzione degli isolatori ai blocchi di granito, i quali hanno dimostrato di non dare un isolamento elettrico abbastanza elevato e di richiedere quind: la connessione alla terra dei piloni. In queste condizioni l'altezza di radiazione, misurata sull'onda di m 10750 , è risultata di 165 m .

Quanto al tipo di strutturs fu scelto quello triangolare, perchè, permettendo l'uso di tre sole famiglie di controventi (stra!li), in tre piani distanti di 120° fra loro, consentiva (nel caso di quattro soli piloni) di tenere gli stralli ben lontani dalla proiezione dell'antenna sul piano orizzontale. Dopo vari studi di massima risultò più conveniente, come dimensione laterale della sezione a triangolo del trave - a traliccio, quella di m 2.50 (fra i centri delle nervature) e ciò in relazione col numero di controventi prescelto. Per questo numero è stato adottato un valore abbastanza alto e cioè di 12 per ogni famiglia, ossia di 36 per ogni pilone, oltre uno speciale strallo suppletivo al vertice di ogni pilone per controbilanciare lo sforzo dell'antenna. Un

Fig. 23. - 11 pilone N .3 durante il montamento.
numero rilevante di stralli permette di ridurre la lunghezza dei tronchi liberi e quindi di rendere più leggero ed economico il pilone, e permette altresi (insieme con la posizione degli ancoraggi relativamente lontana dalla base) di usare per gli stralli. cavi di acciaio di moderate dimensioni, più economici anch'essi, più maneggevoli e più adati ad essere frazionati mediante isolatori. I :ronchi liberi sono 12 e la

